Total de visualizações de página

quarta-feira, 14 de novembro de 2012

ENTENDER COMO AS CRIANÇAS APRENDEM É FUNDAMENTAL.

"TEXTO ENVIADO PELA PC RENATA DA ESCOLA WILFREDO PINHEIRO" 

Entender como as crianças aprendem é fundamental
Os conhecimentos sobre como as crianças aprendem Matemática têm mais de 30 anos, mas ainda não constam dos currículos dos cursos de licenciatura. Aos poucos, aparecem em programas de formação continuada, mostrando maneiras eficientes de ensino da disciplina.
O foco dessa tendência que coloca o aluno no centro do processo de aprendizagem é apresentar a ele situações-problema para resolver. "O docente tem o papel de mediador, ajudando a construir os conceitos e fazendo com que o estudante tenha consciência do que faz na hora de responder as questões", afirma Sandra Baccarin, do Compasso, grupo de pesquisa em Educação Matemática da UnB.
No livro Didática da Matemática, Roland Charnay afirma: "O aluno deve ser capaz não só de repetir ou refazer, mas também de ressignificar diante de novas situações, adaptando e transferindo seus conhecimentos para resolver desafios".
Guy Brousseau, ao construir a teoria sobre o contrato didático, descreveu as relações entre o professor, o saber e o aluno. O docente tem a função de criar situações didáticas em que nem tudo fica explícito (são os obstáculos). À criança cabe pensar em possíveis caminhos para resolvê-las, formulando variadas hipóteses sem ter a necessidade de dar nenhuma resposta imediata. Esse segundo momento é chamado de adidático. É aí que o aluno usa a própria lógica para produzir. "Assim, começamos a preparar os jovens para pensar de forma autônoma", destaca Cristiano Muniz. Depois disso, é tarefa do professor retomar o planejado, para analisar as hipóteses da turma e sistematizar o aprendizado.
Para compreender melhor as condições de ensino, Gérard Vergnaud elaborou a teoria dos campos conceituais. Ao estudar como as crianças resolvem problemas de soma e subtração, o francês percebeu que elas procuram a resposta usando procedimentos diversos do tradicional, com base em vivências e aprendizados anteriores.
"As pesquisas francesas deram aporte a investigações que concebem o aluno como sujeito ativo na produção do conhecimento e considera as formas particulares de aprender e pensar", resume Cristiano Alberto Muniz, coordenador adjunto do Programa de Pós-Graduação em Educação da Universidade de Brasília (UnB). Essa abordagem tem implicações didáticas, pois coloca o professor como conhecedor do processo de aprendizagem, da natureza dos conteúdos e das intervenções mais adequadas para ensinar.
Aulas em que se expõem conceitos, fórmulas e regras e depois é exigida a repetição de exercícios, tão usadas até hoje, têm origem no começo do século 20. Porém sabe-se que elas não são a melhor opção para a Educação Matemática. "Procedimentos clássicos podem ser utilizados desde que tenham coerência com os objetivos do planejamento e estejam acompanhados de tempo para a ref lexão e a discussão em grupo", observa Muniz.
Descobrir estratégias e socializá-las com os colegas
Ciente da capacidade dos pequenos de criar hipóteses, é possível elaborar problemas com diferentes enunciados, variando o lugar da incógnita, e propor discussões em grupo e momentos nos quais os estudantes justifiquem a escolha. "Ao refletir  sobre como pensou para chegar à resposta e comunicar isso aos colegas, o aluno organiza o próprio pensamento e compartilha a estratégia, permitindo que ela seja socializada", afirma Daniela Padovan, selecionadora do Prêmio Victor Civita Educador Nota 10. A justificativa pode ser feita oralmente ou por escrito. Nesse caso, é possível que ele inicie com representações pessoais - como riscos e desenhos - antes de chegar ao registro formal da linguagem matemática. É esse processo que leva à aprendizagem efetiva.
Um aspecto muito disseminado da abordagem socioconstrutivista - base da didática da Matemática da escola francesa - é a visão da aprendizagem como um processo social. Isso significa considerar a articulação dos saberes escolares com a realidade das crianças. A ideia, contudo, costuma gerar muitos equívocos. Um deles ocorre quando o professor privilegia a vivência de situações do cotidiano para introduzir um conteúdo, esquecendo-se, posteriormente, de sistematizar o aprendizado.
Outro engano é a ideia de que contextualizar é ensinar apenas a Matemática usada no dia a dia, como a aritmética de uma compra de supermercado. Contudo, somente em momentos de descontextualização é possível construir conhecimentos para que possam ser usados em outras circunstâncias. Questões internas da disciplina, como a propriedade distributiva da multiplicação, não estão explícitas no que se faz diariamente, mas devem ser objeto de discussão da turma. "A contextualização é importante, mas não pode ser usada o tempo todo", diz Daniela Padovan.

 Fonte: http://revistaescola.abril.com.br/matematica/fundamentos/assim-turma-aprende-mesmo-panoramas-perspectivas-427209.shtml?page=2
=== PARTE 2 ====
=== PARTE 3 ====
=== PARTE 4 ====
=== PARTE 5 ====
=== PARTE 6 ====
=== PARTE 7 ====


Nenhum comentário:

Postar um comentário